Research on Sensorless control strategies for Vehicle stability using Fuzzy based EDC
نویسندگان
چکیده
This paper presents an efficient and robust control scheme of Fuzzy Logic Electronic Differential Controller (FLEDC) for sensorless drive based electric vehicle. The proposed system consists of two Brushless DC motors (BLDC) that ensure the drive of the two back driving wheels of an electric vehicle. Electronic differential controller (EDC) ensures the maximum torque and it can control both the driving wheel independently to turn at different speeds in any curve according to the steering angle. The sensorless control strategies include back EMF zero crossing detection and third harmonic voltage integration. Fuzzy logic based EDC is used on these sensorless control strategies which optimizes the slip rate within the specified limit and thus enhances the vehicle stability The performances in terms of slip rate, current, Torque, back EMF are obtained by the proposed method and are compared with those obtained using conventional control method. By this comparative investigation, a suitable control strategy has been identified. The effectiveness and substantiation of these analysis are ascertained in the MATLAB/Simulink environment and also experimentally validated. I. INTRODUCTION Environmental and economical issues are the major driving forces in the development of electric vehicles (EVs).The selection of the right electric motor is the primary importance to the EVs. Several types of electric motors have been used in the past for EV applications. However from efficiency point of view, BLDC motor drives are the best choice for EV is explained in [1]. In particular, the BLDC motor of the hub type is used in this work to avoid mechanical transmission losses. BLDC motors with their electromagnetic force (EMF) requires six discrete rotor position information for the inverter operation. These are generated by Hall-effect sensors placed within the motor. However it is a well known fact that these sensors have a number of drawbacks. So, sensorless control is the only viable option to operate the motor for applications in harsh environments. Thus many of the drawbacks can be eliminated or reduced with position sensorless operation based on the back EMF of the motor. Many research works on sensorless control technique for BLDC have been conducted and reported in [6]. A deep overview of back EMF sensing methods of BLDC motor which includes terminal voltage sensing, third harmonic voltage integrations and Terminal current sensing techniques are briefly analyzed in [7]. Further, Electronic Differential Controller (EDC) is used in this research work to avoid mechanical differential system. EDC based …
منابع مشابه
IS-MRAS With On-Line Adaptation Parameters Based on Type-2 Fuzzy LOGIC for Sensorless Control of IM
This paper suggests novel sensorless speed estimation for an induction motor (IM) based on a stator current model reference adaptive system (IS-MRAS) scheme. The IS-MRAS scheme uses the error between the reference and estimated stator current vectors and the rotor speed. Observing rotor flux and the speed estimating using the conventional MRAS technique is confronted with certain problems relat...
متن کاملType-2 Fuzzy Braking-Torque Electronic Stability Control for Four-Wheel Independent Drive Electric Vehicles
The electronic stability control (ESC) system is one of the most important active safety systems in vehicles. Here, we intend to improve the Electronic stability of four in-wheel motor drive electric vehicles. We will design an electronic stability control system based on Type-2 fuzzy logic controller. Since, Type-2 fuzzy controller has uncertainty in input interval furthermore of output fuzzin...
متن کاملAn adaptive modified fuzzy-sliding mode longitudinal control design and simulation for vehicles equipped with ABS system
In order to improve the safety and longitudinal stability of a vehicle equipped with standard ABS system, this paper, analyzes the basic principles of vehicles stability and proposes a control strategy based on fuzzy adaptive control which will adjust PID gain parameters, using genetic algorithm. A linear three-degree-of-freedom (DOF) vehicle model was set up in Simulink and the stability test ...
متن کاملSensorless Model Reference Adaptive Control of DFIG by Using High Frequency Signal Injection and Fuzzy Logic Control
In this paper, a new sensorless model reference adaptive method is used for direct control of active and reactive power of the doubly fed induction generator (DFIG). In order to estimate the rotor speed, a high frequency signal injection scheme is implemented. In this study, to improve the accuracy of speed estimation, two methods are suggested. First, the coefficients of proportional-integral ...
متن کاملDriving/Regeneration and Stability Enhancement of a 4WD Hybrid Vehicles Using Multi-Stage Fuzzy Controller
In front wheels driven vehicles, fuel economy can be obtained by summing torques applied to rear wheels. On the other hand, unequal torques applied to rear wheels provides enhanced safety. In this paper, a model with seven degrees of freedom is considered for the vehicle body. Thereafter, power-train subsystems are modeled. Considering an electrical machine on each rear wheel, a fuzzy controlle...
متن کامل